首页> 外文OA文献 >Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues
【2h】

Functional central limit theorems for stationary Hawkes processes and application to infinite-server queues

机译:静止Hawkes过程和函数的泛函中心极限定理   应用于无限服务器队列

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A univariate Hawkes process is a simple point process that is self-excitingand has clustering effect. The intensity of this point process is given by thesum of a baseline intensity and another term that depends on the entire pasthistory of the point process. Hawkes process has wide applications in finance,neuroscience, social networks, criminology, seismology, and many other fields.In this paper, we prove a functional central limit theorem for stationaryHawkes processes in the asymptotic regime where the baseline intensity islarge. The limit is a non-Markovian Gaussian process with dependent increments.We use the resulting approximation to study an infinite-server queue withhigh-volume Hawkes traffic. We show that the queue length process can beapproximated by a Gaussian process, for which we compute explicitly thecovariance function and the steady-state distribution. We also extend ourresults to multivariate stationary Hawkes processes and establish limittheorems for infinite-server queues with multivariate Hawkes traffic.
机译:单变量霍克斯过程是一个自激且具有聚类作用的简单点过程。该点过程的强度由基线强度和取决于点过程的整个历史的另一个术语的总和给出。霍克斯过程在金融,神经科学,社会网络,犯罪学,地震学等许多领域都有广泛的应用。本文证明了在基线强度较大的渐近状态下平稳霍克斯过程的一个中心极限定理。该限制是具有相关增量的非马尔可夫高斯过程。我们使用由此得出的近似值来研究具有大量Hawkes流量的无限服务器队列。我们表明,队列长度过程可以由高斯过程近似,为此我们可以显式计算协方差函数和稳态分布。我们还将结果扩展到多元平稳霍克斯过程,并为具有多元霍克斯流量的无限服务器队列建立极限定理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号